共軛高分子PTD體外造影劑輔助近紅外二區(qū)光聲顯微成像
體外造影劑輔助的近紅外二區(qū)光聲顯微成像技術(shù)可以解析三維廣面積/大深度,高信號(hào)/背景比例,高成像深度/深度分辨率比例的生物組織。
具有強(qiáng)近紅外二區(qū)吸光系數(shù)的共軛高分子納米顆粒輔助的三維高分辨率光聲顯微成像,實(shí)現(xiàn)了腦部和部位的心血管的微米分辨率,毫米穿透深度,高信號(hào)/背景比例的原位活體成像。此文成像效果比近紅外二區(qū)熒光三維激光共聚焦成像效果更有優(yōu)勢(shì)。
背景介紹
生物組織三維成像技術(shù)可以用來解析血管和結(jié)構(gòu),有利于分析生理/病理過程,是目前成像技術(shù)發(fā)展的前沿。傳統(tǒng)三維成像技術(shù)各自有一定局限性。比如核磁, PET 和 CT 成像分辨率不足。雙光子和近紅外二區(qū)熒光激光共聚焦成像的視野狹小,其成像質(zhì)量有待進(jìn)一步提高。光聲顯微成像能夠調(diào)節(jié)分辨率和成像深度,是近年來新興的成像技術(shù)。相對(duì)于近紅外一區(qū)/可見光光聲顯微成像,近紅外二區(qū)光聲顯微成像能夠就降低光散射/生物組織光吸收對(duì)成像的干擾。此前報(bào)道的近紅外二區(qū)光聲成像大都使用體內(nèi)造影劑來成像, 但是生物組織容易產(chǎn)生強(qiáng)噪音干擾,使體內(nèi)造影劑輔助近紅外二區(qū)光聲成像表現(xiàn)出低信號(hào)/背景比例,模糊的成像效果。
研究出發(fā)點(diǎn)
體外造影劑能夠**提高成像質(zhì)量. 適用于活體成像的造影劑需要生物相容性好,光穩(wěn)定性好,吸光系數(shù)大,弱熒光,可大規(guī)模制備等特點(diǎn). 有機(jī)共軛高分子可以滿足這些條件. 于是, 我們?cè)O(shè)計(jì)了一個(gè)新型, 微流控技術(shù)制備的具有強(qiáng)近紅外二區(qū)吸收的共軛高分子納米顆粒, 來輔助實(shí)現(xiàn)三維近紅外二區(qū)顯微光聲成像。
圖文解析
劉斌課題組設(shè)計(jì)了新型電子給體-電子受體1 -電子給體-電子受體2 結(jié)構(gòu)構(gòu)成的共軛高分子 PTD, 使用課題組自制的微流控技術(shù)制備了大小可控且尺寸均一的納米顆粒(40 納米左右). 該納米顆粒在吸收峰 1161 納米左右的吸光系數(shù) 高達(dá) 48.1 L g-1, 有利于實(shí)現(xiàn)光聲造影 (如圖1 所示)。
▲Figure 1. (a) The synthetic route towards PTD. Reagents and conditions: Pd2(dba)3, P(o-tyl)3, anhydrous toluene, 100 oC, 48 h; (b) Schematic diagram of microfluidic glass capillary mixer for the synthesis of monodisperse PTD NPs through modified nanoprecipitation. (c) TEM image of PTD NPs synthesized at Re 320 with 40% EtOH in the anti-solvent. (d) Changes in the size and PDI of PTD NPs by varying the amount of EtOH in the antisolvent from 0 to 75% at Re 320. (e) Variation in the size of PTD NPs with 25, 40 and 75% EtOH in the anti-solvent at different Re.
同時(shí), 如圖2 所示, 我們使用該納米顆粒實(shí)現(xiàn)了耳朵上皮下肝的血管三維成像. 先, 在未注釋納米顆粒前,調(diào)整光聲成像參數(shù),使背景信號(hào)降低到較低. 注射納米顆粒后,使用 1064 納米脈沖激光, 實(shí)現(xiàn)了部位的無損廣面積成像. 成像面積高達(dá) 7 毫米× 7 毫米, 成像深度達(dá) 0.76 毫米. 在 755 微米成像深度處, 分辨率是 25.9 微米, 信號(hào)/背景比例是 26.0 dB, 成像深度/深度分辨率高達(dá) 29.1 倍. 同時(shí)通過定性和定量比對(duì)部位和周圍正常組織的血管密度, 邊界可以勾畫出來. 本研究的近紅外二區(qū)光聲顯微成像效果比較近報(bào)道的近紅外二區(qū)熒光三維共聚焦成像效果好.可能原因有三個(gè): (1) 本實(shí)驗(yàn)使用的 1064 納米激發(fā)光比近紅外二區(qū)熒光成像使用的808納米激光的光散射效應(yīng)更低; (2) 光聲成像的聲波散射比熒光成像的光散射效應(yīng)更低; (3) PTD 納米顆粒吸光系數(shù)大, 可以較大限度的背景噪音. 然而二區(qū)熒光中的活體自發(fā)熒光比較強(qiáng), 產(chǎn)生的噪音干擾不可忽略。
此外, 如圖3 所示, 我們使用 PTD 納米顆粒實(shí)現(xiàn)了透過老鼠頭骨腦血管的三維高分辨(分辨率 25.4 微米),高信號(hào)/背景比例( 22.3 dB)成像. 其成像深度高達(dá) 1001 微米. 該腦血管光聲成像效果比較近報(bào)道的雙光子成像和近紅外二區(qū)熒光共聚焦成像的效果好.
▲Figure 2. PA imaging of subcutaneous HepG2 tumor-bearing mouse ear with a colorbar 0.06-1. (a) Photo of mouse ear bearing subcutaneous tumor for PA imaging. Representative xy projected tumor bearing mouse ear image (7.00 × 7.00 mm, x × y) before (b) and after (c) PTD NP administration. (d) Depth-encoded maximum amplitude projection image corresponding to Figure c (The PA signal color changes correspond to different depths according to the color chart for depth information on the right side). (e) and (f) 3D reconstruction of tumor-bearing mouse ear vasculature images from different view side (7.00 × 7.00 × 0.76 mm, x × y × z) and the tumor margin was labelled with white-dashed circle. (g) Layer-by-layer PA images (7.00 × 7.00 mm, x × y) of subcutaneous tumor-bearing mouse ear with white-dashed circle for labelling tumor margin in each layer. (h) and (i) The PA intensity profile (black curve) along the green line in the zoomed area (insets, Figures h and i) which represents the area labelled with green-dashed circle at depths of 370 and 755 ?m, respectively. The Gaussian fits to the profiles are presented using red curves. Gaussian-fitted full width at half maximum (FWHM) of the vessel along the green line is presented at different depth.
▲Figure 3. In vivo ORPAMI of whole-cortex brain through intact skull after administration of PTD NPs through tail-vain (colorbar: 0.06-1). (a) Layer-by-layer PA images (8 × 6 mm, x × y) of mouse brain. The deepest area reached 1001 ?m. (b) Photo of mouse for imaging. (c) Representative xz projected brain vasculature image (8 × 1 mm, x × z). (e) Representative xy projected brain vasculature image (8 × 6 mm, x × y). (f) 3D reconstruction of brain vasculature (8 × 6 × 1 mm, x × y × z). (d) and (g) The PA intensity profiles along the green line in the zoomed area (inset, Figure d and g) which represents the area labelled with green-dashed circle (Figure a) at the depths of 77 and 1001 ?m, respectively. The Gaussian fits to the profile are shown in red curve. Gaussian-fitted full width at half maximum (FWHM) of the vessel along the green line is presented at different depth.
總結(jié)與展望
實(shí)現(xiàn)了體外造影劑輔助近紅外二區(qū)光聲顯微成像. 微流控技術(shù)制備共軛高分子, 可以實(shí)現(xiàn)尺寸可控, 形貌均一. 同時(shí),共軛高分子生物相容性好,吸光系數(shù)大,光聲穩(wěn)定性好,是很好的活體成像的光聲造影劑. 我們證明二區(qū)共軛高分子輔助光聲顯微成像可以準(zhǔn)確勾畫邊界, 解析內(nèi)部和周圍正常組織血管結(jié)構(gòu), 準(zhǔn)確成像腦補(bǔ)三維復(fù)雜血管脈絡(luò). 因此, 共軛高分子納米顆粒是很有潛力的活體成像造影劑, 用來理解生理和病理過程。
wyf 04.01